First Question: (8 pts)

DC Voltage

The given diagram represents an electric circuit consists of a dry cell that provide a constant voltage 12 V, 2 lamps, a switch K, connecting wires and a voltmeter that indicates +9V. The current sent by the dry cell is 500 mA.

1. Determine the voltage $U_{\mbox{\scriptsize CN}}$ across the closed switch K.

2. Indicate the voltages U_{PA}

3. Specify whether the voltmeter measures the value of $U_{\mbox{\tiny AB}}$ or $U_{\mbox{\tiny BA}}.$

- 4. Deduce the voltage U_1 across the lamp L_1 .
- 5. Calculate the voltage U_{BC} across the lamp L_2 .
- 6. Determine the currents carried by the lamps L_1 and L_2 .
- 7. Indicate on the diagram an ammeter that gives negative
- indication of the current sent by the dry cell.

Second Question: (5 pts)

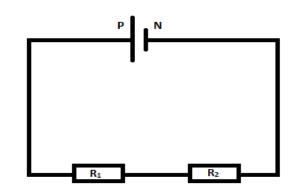
Third Question: (6 pts)

Grouping Resistor in Series

Consider the circuit given by the adjacent figure.

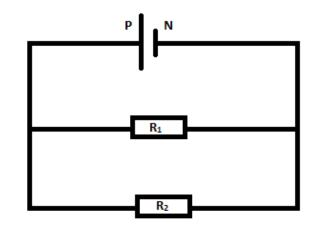
<u>**Given:**</u> The dry cell maintains a constant voltage U_{PN} = 12 V; R_1 = 100 Ω and R_2 = 200 Ω .

- 1) Find the resistance of the resistor equivalent to the two resistors.
- 2) Calculate the current sent by the dry cell.
- 3) Calculate the voltage U_1 across the resistor R_1 .
- 4) Calculate the voltage U_2 across the resistor R_2 .


Grouping Resistor in Parallel

Consider the circuit given by the adjacent figure.

<u>**Given:**</u> The current sent by the dry cell I= 1 A; $R_1 = 40 \Omega$ and $R_2 = 10 \Omega$.


1) Indicate the direction of the current in each branch.

- 2) Find the resistance of the resistor equivalent to the two resistors.
- 3) Calculate the voltage $U_{\mbox{\scriptsize PN}}$ across the generator.
- 4) Calculate the current I_1 across the resistor R_1 .
- 5) Calculate the current I_2 across the resistor $\mathsf{R}_2.$

В

А

